La científica de datos Ana Laguna Pradas entrena a un modelo de inteligencia artificial para que aprenda a interpretar el llanto de un bebé, a partir del deseo de saber qué quería su bebé al llorar.
Durante el embarazo Laguna le daba vueltas a una pregunta: “¿Cómo voy a entenderle?” Un bebé se comunica llorando: quiere comer, mimos, le duele algo, tiene sueño. ¿Pero qué quiere exactamente cada vez que llora? Era 2016, Laguna buscó apps para interpretar ese llanto y solo encontró una china que funcionaba mal.

“Si Jane Goodall comprende el lenguaje de los chimpancés, ¿por qué no intentar traducir a un recién nacido?”
¿Por qué no hacerla ella misma?, pensó Laguna, que es científica de datos en BBVA Data&Analytics. Su intuición le decía que los lloros de un bebé tienen patrones y que la inteligencia artificial puede detectarlos: “Había trabajado en traducción automática, y el llanto del bebé no deja de ser otro medio de comunicación oral. Además, si Jane Goodall comprende el lenguaje de los chimpancés, ¿por qué no intentar traducir las necesidades de un recién nacido con un algoritmo?”, dice.

Tras la cuarentena, empezó a grabar a su hijo. Cada muestra de lloro debía durar al menos 10 segundos. Así estuvo hasta los cuatro meses. Reunió unos 65 audios. Al final el pequeño no lloró tanto: de media resultó menos de una grabación al día.

El ojo humano ve diferencias obvias en las señales de audio, pero un algoritmo necesita más detalles para encontrar patrones. Así que Laguna recurrió a los espectogramas. La intuición se confirmaba: “Las señales de audio tenían buena pinta y la precisión del modelo era aceptable”, dice.
Pero Laguna dio con un nuevo problema: la falta de muestra, de lloros. La inteligencia artificial necesita una cantidad sustancial de ejemplos.

Además una vez reunidos suficientes ejemplos de un tipo de lloro, hay otra pregunta difícil: el etiquetado. La etiqueta es lo que identifica un lloro como de dolor, hambre, sueño, ganas de mimos y deben ponerla los padres. Si las etiquetas están mal puestas, el modelo buscará mal los patrones y será un desastre. Antes de que el algoritmo pueda ver patrones en cada lloro, deben hacerlo los padres.

Por falta de datos y de buenas etiquetas, Laguna acabó dividiendo su base de datos en solo dos opciones: hambre y no hambre. La pretensión inicial de acertar con más tipos de lloro quedó aparcada.
Ahora Laguna vuelve a estar embarazada. Esta vez irá más en serio.

La única esperanza de Laguna para aumentar la base de datos no es su segundo hijo. Ha creado una ONG para hacer trabajos de datos donde hay un formulario para que otros bebés colaboren. El objetivo es doble: crecer más rápido y evitar el sesgo de que toda la base de datos sea del lloro de dos hermanos. Pueden subir los padres el llanto de sus pequeños. Laguna quiere trabajar con lloros de bebés de menos de 6 meses.

El lloro de dolor es indiscutible: están sacados de pinchazos a bebés por vacunas o por agujeros en la oreja. Las otras dos categorías que de momento manejan -inquieto y hambriento- tienen control de calidad: “Son etiquetados por los padres (normalmente la madre). Estamos de acuerdo en un 80% de lloros, lo que muestra que madres experimentadas pueden reconocer lloros de bebés que no son suyos”, explica Anderson.

A pesar de los avances de Chatterbaby, los bebés españoles y latinoamericanos deberán confiar en la labor de Laguna. Los niños lloran distinto por lengua y país: “El bebé puede oír la melodía (prosodia) de la lengua de la madre en el útero”, dice Anderson. Debido a la extensión de la app, la base de datos internacional de Chatterbaby crece pero aún es insuficiente para llegar a todas partes: “Alrededor de un 80% de nuestros usuarios son internacionales”, dice Anderson.

Chatterbaby tiene más usos. Puede ayudar a los padres sordos y hay indicios de que irregularidades en el lloro de un bebé puede ayudar en un diagnóstico temprano del autismo.

En las puntuaciones de Google Play la app solo tiene a padres muy satisfechos que dan cinco estrellas y a otros muy decepcionados, que dan una. Debe de ser muy frustrante tener a las 3 de la mañana la última tecnología en inteligencia artificial y no poder hacer nada mientras el bebé sigue llorando.

Con información de Primera Voz